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Abstract  

BACKGROUND: Hierarchical Bayesian methods have been used in previous papers to estimate 

national mean effects of air pollutants on daily deaths in time-series analyses. 

OBJECTIVES: To obtain maximum likelihood estimates of the common national effects of the 

criteria pollutants on mortality based on time-series data from up to 108 metropolitan areas in the 

U.S.  

METHODS: We used a subsampling bootstrap procedure to obtain the maximum likelihood 

estimates and confidence bounds for common national effects of the criteria pollutants, as 

measured by the percentage increase in daily mortality associated with a unit increase in daily 

24-hour mean pollutant concentration on the previous day, while controlling weather and 

temporal trends. Five pollutants, PM10, ozone, CO, NO2, and SO2 were considered in single and 

multi-pollutant analyses. Flexible ambient concentration-response models for the pollutant 

effects were considered as well. Limited sensitivity analyses with different degrees of freedom 

for time trends were performed. 

RESULTS: In single pollutant models, we observed significant associations of daily deaths with 

all pollutants. The ozone coefficient was highly sensitive to the degree of smoothing of time 

trends. Among the gases, SO2 and NO2 were most strongly associated with mortality. The 

flexible ambient concentration-response curve for ozone showed evidence of non-linearity and a 

threshold at about 30 ppb. 

CONCLUSIONS:  Differences between the results of our analyses and those reported from the 

Bayesian approach suggest that estimates of the quantitative impact of pollutants are dependent 

on choice of statistical approach, although results are not directly comparable because they are 
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based on different data. Additionally, the estimate of the ozone-mortality coefficient depends on 

the amount of smoothing of time trends. 
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Introduction 

 

Time-series analyses of air pollution and various health end points, including daily mortality, 

using flexible generalized linear models (GLM) or generalized additive models (GAM), have 

become commonplace in the last decade. The National Morbidity, Mortality and Air Pollution 

Study (NMMAPS) was an ambitious effort undertaken by scientists at Johns Hopkins and 

Harvard Universities to investigate the association between particulate pollution (PM10) and 

morbidity and mortality in the 90 largest metropolitan areas in the U.S. over the period 1987-

1994 using time-series methods (Dominici et al. 2003; Samet et al., 2000a, 2000b, 2000c). For 

the mortality analyses, the investigators used a common approach for analyses of the time-series 

data on daily PM10 levels and deaths for each city. Specifically, a national mean estimate for the 

association between PM10 and mortality was obtained by combining the individual city-specific 

estimates using a hierarchical Bayes procedure, which assumed that the city-specific effects were 

normally distributed. Since then the analyses have been extended to include more cities, more 

years of data, and a second pollutant, ozone (Bell et al. 2004; Smith et al. 2009). In this paper, 

we propose an approach to analyzing multi-city time-series data that is complementary to the 

hierarchical Bayes approach.  

 

Arguably, for standard setting, one might want to estimate not a national mean effect, but a 

common pollutant effect across the country. The most direct way to estimate a common pollutant 

effect on mortality across multiple cities would be to analyze all cities simultaneously using a 

GLM or GAM model postulating a common pollutant effect estimate across cities, but with 

control of confounders being specific to each city. A statistical test for the hypothesis that there 
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is a common pollutant effect across cities could then be based on standard likelihood based 

procedures or on the Akaike or Bayes Information Criteria (AIC or BIC). Alternatively, a 

computational approach to investigating the distribution of a common estimator of a pollutant 

effect is to use the bootstrap or the jackknife on the full complement of cities (Efron and 

Tibshirani 1993). However, with a large number of cities this conceptually simple approach 

presents formidable computational problems.  One way around the computational problems is to 

use either the 'delete-k jackknife' followed by the bootstrap (Efron and Tibshirani 1993) or the 

subsampling procedure (Politis et al. 1999). In this paper we used the subsampling procedure to 

analyze the time-series data on all the criteria pollutants, with the exception of lead, and 

mortality in 108 metropolitan areas in the U.S. over the 14-year period 1987-2000.  

 

Data and Methods 

 

We downloaded the mortality and air pollution time-series data from the NMMAPS website 

maintained by the JHU investigators. Using the same data base allows direct comparisons to be 

made to the previous work of the JHU team and others using these data. Daily data on the 

number of deaths are available for 108 metropolitan areas over the 14-year period 1987-2000. 

Daily concentrations of pollutants, PM10, O3, CO, NO2, SO2, are also available, although for each 

of the pollutants, information is available only for a subset of the days. A limitation, shared with 

all epidemiologic analyses of air pollution data, is that the data were collected from stationary 

monitors to determine compliance with air quality regulation.  Thus, the data collected are not 

necessarily ideal for epidemiologic studies. We recognize also that ambient concentrations are 

imperfect surrogates for personal exposure. 
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For the usual bootstrap approach, for each bootstrap cycle, 108 cities would be chosen with 

replacement from the original set of 108 cities, and the maximum likelihood estimate (MLE) of 

the pollutant effect computed using Poisson regression methods. This procedure would be 

repeated many times to obtain an estimate of the distribution of the common pollutant effect. 

However, with the large number of cities considered in these analyses, it is computationally 

infeasible to derive an MLE using this approach. Therefore, an alternative procedure, such as the 

delete-k jackknife (Efron and Tibshirani 1993) or the closely related subsampling procedure 

(Politis et al. 1999) must be implemented. For the delete-k jackknife followed by the bootstrap 

procedure, first the set of all possible subsets of size d = 108-k is constructed from the 108 cities. 

Each bootstrap cycle then randomly selects from this set and the common pollutant effect is 

estimated for the specific chosen set of d cities.  

 

We used a closely related method, the subsampling procedure described by Politis et al. (1999). 

In this procedure, for each bootstrap cycle, we randomly chose d cities without replacement out 

of the 108 cities with available data, and estimated the common pollutant effect for each sample 

of d cities. Politis et al. recommend that d be much smaller than 108, and we chose d = 4. The 

choice of d is arbitrary; however, the confidence intervals for the parameter estimates have to be 

adjusted for this choice as discussed below. The distribution of the estimator of the common 

pollutant effect was based on 5,000 bootstrap cycles. 

 

Let X1, X2,...,Xn be a sequence of independent observations, i.e., a sequence of realizations of 

independent random variables. In our case, each observation in the sequence represents the data 
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on daily deaths, pollutant concentrations and weather variables over the period 1987 - 2000 in 

each of the n cities considered in the analyses. The total number of cities, n, depends on the 

pollutant or combination of pollutants considered. For example, n = 102 for analyses that involve 

PM10 alone, and n = 56 for analyses that involve all pollutants. Let Θ be the parameter 

representing the common effect of a pollutant, and let θn be the MLE for Θ based on n 

observations, and θd the MLE for Θ based on d<<n observations, i.e., based on a subset of d 

cities. Then, by general maximum likelihood theory, θn and θd converge to Θ with rates √n and 

√d, respectively.  

 

Under standard likelihood-based procedures, inferences would be based on the distribution of θn. 

However, computation of θn and its distribution is infeasible with large n. Therefore, we base our 

inferences on θd, where in our case, d = 4, and base our confidence intervals on the subsampling 

distribution as described in Politis et al. (1999). The properties of the subsampling procedure 

hold under rather weak conditions. The sequence of observations is required to satisfy the α-

mixing condition (Politis et al. 1999, page 315). This condition is seen to be trivially satisfied by 

a sequence of independent observations. An anonymous referee suggested that sampling units 

other than entire cities might be more appropriate. We agree that other sampling schemes need to 

be explored. 

 

Confidence intervals were computed after adjustment for the size of the subsample as follows. 

Let Fd
*
 represent the empirical distribution function of √d (θd - Θ). Then for any significance 

level α, we have 
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Fd
*-1

(α/2) < √n (θn - Θ) <  Fd
*-1

(1 - α/2) with probability close to 1 - α. It then follows that θn - 

(1/√n)Fd
*-1

(1 - α/2)  <  Θ  <  θn - (1/√n )Fd
*-1

(α/2) is a 1 - α confidence interval for Θ. In our case, 

we are unable to estimate θn because of computational issues. We therefore approximate θn by (Σ 

θd)/N, where N = 5,000 the total number of subsamples drawn. That is, we approximate θn by the 

mean of the θd. 

 

Thus, for our analyses, for each bootstrap cycle, we drew a random sample of 4 cities without 

replacement from among the 108 cities with available data. We then fit an over-dispersed 

Poisson model to the randomly chosen 4 cities to obtain the MLE of the common pollutant 

effects on mortality in the 4 cities, but with confounders, such as temperature and relative 

humidity, being separately controlled in each of the 4 cities. Because a number of previous 

analyses (e.g., Bell et al. 2004; Dominici et al. 2003) have considered the effect of the pollutants 

with a one-day lag, we have done the same in these analyses. Likewise, the number of degrees of 

freedom for time trends and weather are also consistent with those used in previous analyses ( 

Bell et al. 2004; Dominici et al. 2003;Moolgavkar 2003).  Specifically, for each bootstrap cycle 

we modeled the number of deaths from all causes (with accidents and suicides removed) in a city 

on a specific day as a function of the 24-hour average pollutant concentration on the previous 

day, temporal trends (50 or 100 df natural spline), day of the week (categorical variable), mean 

temperature on the previous day (6 df natural spline), and mean dew-point temperature on the 

previous day (6 df natural spline). Note that this model controls confounders, day of week 

effects, and time trends in city-specific fashion.  
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To investigate the shape of the ambient concentration-response relationship, we used the same 

models with the pollutant effects represented by natural splines with 6 degrees of freedom. 

Multiple pollutants that have been concurrently measured can be easily added as covariates in 

these analyses. Because of missing data, the size of the data set from which samples of cities are 

drawn for analyses depends on the number of pollutants considered. 

 

Clearly, the choice of lags for specific pollutants and for the weather variables, temperature and 

relative humidity, should be based on biological considerations whenever possible. 

Unfortunately, there is little information to guide these choices. In previous publications, a one-

day lag has often been used. For example, in the revised NMMAPS analyses, Dominici et al. 

(2003) used the same lag for each of the pollutants in their multi-pollutant analyses. Their results 

indicate that a one-day lag yields close to the maximum impact on daily mortality. It would be 

possible also to consider other lag structures, such as distributed lag models. However, the 

purpose of this paper is not a comprehensive re-analysis of the NMMAPS data, but to provide an 

approach to the analysis of national data that complements the Bayesian approach. Similarly for 

the weather covariates, we have used a one-day lag because there is little biological information 

to suggest that any specific lag structure is better than any other. 

 

The model was fit to the data using the R software package. The means of the 5,000 maximum 

likelihood estimates of the common pollutant effects are approximately unbiased and consistent 

estimators of the common national effects of the pollutants.   
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We conducted simulations to investigate the coverage properties of the confidence intervals 

constructed as described above. Specifically, we generated 100 observations based on a Poisson 

variate with an intercept and a slope. From these 100 observations, we drew 5,000 subsamples of 

size 4 without replacement and computed 90% and 95% confidence intervals as described above 

in addition to computing the usual likelihood-based confidence intervals. We repeated this entire 

procedure 1,000 times to investigate the coverage properties of the confidence intervals. We 

found that the mean of the 5,000 subsample estimates was an excellent approximation to the 

MLE (data not shown). While the usual likelihood-based confidence intervals covered the true 

values of the parameters with the nominal coverage probabilities, the subsampling confidence 

intervals were conservative, i.e., their coverage probabilities were larger than the nominal 

coverage probabilities. The 95% confidence intervals covered the true values of the parameters 

approximately 98% of the time and the 90% confidence intervals covered the true values of the 

parameters approximately 95% of the time (data not shown). Therefore, because the estimated 

confidence intervals (CI) were highly conservative, i.e., too wide, we present both 95% and 90% 

confidence intervals in our tables and note that our tests of significance (i.e., whether or not the 

CIs contain 0) are also  conservative, i.e., the actual level of significance is smaller than the 

nominal alpha The coverage properties both of the CIs constructed using the subsampling 

approach and the credible intervals constructed in the hierarchical Bayes approach need to be 

explored in realistic simulation scenarios.  

 

Results 

Bootstrap means and 90% and 95% confidence intervals after small sample corrections for 

common nationwide estimates of effects of pollutants represent associations with incremental 
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changes in the 24-hour average concentration on the previous day of 10 µg/m
3
 for PM10, 10 parts 

per billion (ppb) for ozone, SO2, and NO2, and 1 part per million (ppm) for CO. The unit 

measures for the individual pollutants were chosen to facilitate comparisons with previous 

estimates rather than typical day-to-day variations in ambient concentrations, which vary among 

cities. With time trends smoothed using 100 df natural splines, all pollutants were significantly 

(at the 0.05 level) associated with mortality in single pollutant models (Table 1). With 50 df 

natural splines for time trends, the estimated coefficient for ozone was greatly attenuated and 

statistically insignificant.  

 

The magnitudes of associations with incremental increases in CO, NO2, and SO2 were greater 

than for associations with PM10 and ozone. When CO, NO2, and SO2 were included in the same 

model with 100df splines for time trends all three associations were attenuated, and the 

association of CO with mortality was no longer statistically significant (Table 2).  

 

Two-pollutant analyses of PM10 and each of the gases with 100df splines for time trends 

indicated significant associations for PM10 in all 4 models, though estimated effects were 

attenuated except in the model adjusted for ozone (Table 3). Effect estimates for CO, NO2 and 

SO2 were significant and consistent with estimates that were not adjusted for PM10, but the 

estimated effect of ozone on mortality was attenuated and was not statistically significant based 

on the 95% CI and even the 90% CI (Table 3).  

    

Bootstrap means for flexible ambient concentration-response relationships, using 6 df natural 

splines, between pollutant concentrations and deaths on the following day estimated from single 
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pollutant models suggest non-linearity and threshold-like behavior for NO2, PM10 and O3 (Figure 

1). However, the confidence intervals for NO2 and PM10 are wide and the concentration-response 

relationships are also consistent with linearity.  

 

Our approach assumes a common national pollutant effect.  However, if there is a common 

national pollutant effect, then for a randomly chosen set of 4 cities, one would expect a common 

shared-effects model to have a lower AIC than a model postulating separate effects. Therefore, 

for each bootstrap cycle, we computed the Akaike Information Criterion (AIC) for the common 

pollutant effect model and for the individual models of each sample of 4 cities selected for each 

cycle. For all pollutants, the AIC was lower for the separate 4-city fits than for the model 

postulating common pollutant effects for more than half the cycles (data not shown).  

 

Discussion 

In this paper, we have used a subsampling bootstrap approach to estimating maximum likelihood 

estimates for common national effects for associations of individual pollutants with mortality. 

Previous analyses of NMMAPS data have used a hierarchical Bayes approach (e.g., Bell et al. 

2004; Samet et al. 2000a, b, c; Smith et al. 2009) to estimate a national mean effect.  

 

The procedure described in this paper is one approach to estimating common pollutant effects, if 

they exist, but in a vast geographically and climatically diverse country such as the U.S. it is not 

unreasonable to expect heterogeneity of pollutant effects across the country. First, PM is a 

complex mixture whose composition varies by region and season. Ozone could also be 

considered a mixture because it is generally present with other oxidants. Second, for all 

Page 13 of 33



 14

pollutants, any effects on human health would be expected to be modified by weather and by the 

circumstances of exposure, which clearly vary by region and season. A comparison of AIC 

statistics for sample-specific (4 city) models and for common estimate models suggests that the 

4-city models fit the data better than the common model in most cases, which is consistent with 

heterogeneous effects among cities.. This finding is consistent with the results of the hierarchical 

Bayes multi-city analyses (Bell and Dominici 2008; Dominici et al. 2003; Smith et al. 2009). The 

heterogeneity of pollutant effects suggests that any single national estimate may not provide a 

reliable measure of the health benefits that would accrue from a reduction in pollutant 

concentrations.  

 

An advantage of the Bayesian approach is that it allows for heterogeneity of city-specific 

coefficients, albeit with the simplifying assumptions that these are independent and identically 

distributed. That said, the hierarchical Bayes approach and the subsampling approach described 

in this paper are complementary approaches to estimating a single national pollutant effect. 

Under both approaches, however, further investigation of heterogeneity requires that regional 

analyses be performed. 

 

The use of Bayesian methods in multi-city analyses was pioneered by the first investigators of 

NMMAPS (Dominici et al. 2000; Samet et al. 200a, b, c). Their approach to the analyses of 

multi-city data has used a two-stage procedure, with analyses of single cities at the first stage, 

followed by a hierarchical Bayes analysis of the first stage results to arrive at a single estimate of 

a national mean for the pollutant effect. Once the first stage analyses are completed, the 

estimated pollutant effects are considered in isolation from the other covariates and combined in 
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a second stage, resulting in a procedure that is operationally similar to a meta-analysis. This 

procedure assumes that the asymptotic distribution of the pollutant effect estimate has been 

achieved, and that a simple approximation to a full Bayesian analysis yields valid results in the 

second stage. The first assumption regarding the asymptotic distribution of parameter estimates 

is widely made in statistical procedures. And, in fact, one study (Dominici et al. 2000) reports 

that the asymptotic properties of the MLE are well approximated in the first stage analyses. Our 

procedure also relies on asymptotic results.  

 

The assumptions underlying the second stage procedure may be more problematic. A fully 

Bayesian analysis would put prior distributions on all the parameters of the model, not just the 

pollutant coefficients, and allow the parameter estimates along with their covariance structure 

from the first stage to be carried forward to the second stage analyses. While this procedure may 

be possible in theory, it would be much more computationally intensive and may not be 

practical. While it is not clear that a fully Bayesian analysis would make a substantial difference 

to the results, these issues do not arise with the approach proposed in this paper, and common 

national pollutant-mortality coefficients and their confidence intervals can be estimated in a 

single stage analysis even when multiple pollutants are modeled using splines.  However, the 

simple simulation that we performed indicated that the confidence intervals generated using our 

approach were conservative. The coverage properties of confidence and credible intervals 

generated, respectively, by the subsampling and the hierarchical Bayes procedures need to be 

investigated using realistic and comprehensive simulation scenarios. 
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Smith et al. (2009) observed that the national mean from the hierarchical Bayes analysis 

approximates the mean (not the inverse variance weighted mean) of the individual city-specific 

estimates as the variance of assumed distribution of the city-specific coefficients goes to infinity. 

They cautioned against any use of a national statistic, but advocated the use of a population-

weighted mean if a national statistic is computed. The mean of the distribution of the bootstrap 

samples we generate implicitly has a population weight built in because the common estimate for 

each bootstrap cycle is influenced by the sizes of the populations of the cities in that cycle.  

 

Our confidence intervals for the estimated common national effects of the pollutants are wider 

than the credible intervals reported in earlier papers using the hierarchical Bayes approach. This 

could be a consequence of hierarchical Bayes credible intervals that may be too narrow (because 

the fully Bayesian procedure is replaced by an approximation that ignores estimates of weather 

and time-trend parameters in the second stage analyses), in addition to subsampling confidence 

intervals that are too wide (conservative), as suggested by our simulations. 

 

Previous multi-city analyses have focused on PM10 or ozone (Bell et al. 2004, 2006;  Dominici et 

al. 2003; Katsouyanni et al. 2009Smith et al. 2009;). Analyses that addressed regional 

heterogeneity (Bell and Dominici 2008; Dominici et al. 2003; Smith et al. 2009) have reported 

considerable heterogeneity of estimated coefficients for both PM and ozone. Dominici et al. 

reported the largest PM10 coefficients in the Northeast among the seven regions they considered, 

followed by Southern California. The smallest PM10 coefficients were reported in the Upper 

Midwest. The estimated coefficients in the Northeast were twice as high as those reported for the 

Upper Midwest. Smith et al., (2009) estimated the highest ozone coefficients for the Northeast 
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and the Industrial Midwest but did not estimate significant effects for Southern California where 

levels of ozone have always been high. A similar gradient of ozone coefficients, with no 

associations in Los Angeles, intermediate effect estimates for Chicago, and larger effect 

estimates for New York have been reported in other studies (Moolgavkar 2003). 

 

Previous time-series analyses of air pollution and mortality have focused on PM10 or ozone, with 

other pollutants addressed as confounders, if at all (Dominici et al. 2003). Our findings suggest 

that the emphasis on PM and ozone may deserve reconsideration, as estimated associations were 

strongest for CO, NO2 and SO2. In addition, coefficients for all 3 gases remained highly 

significant in joint pollutant analyses with PM10, and coefficients for NO2, and SO2 remained 

significant in a model that included all 3 gases. 

 

PM10 The NMMAPS analyses estimated a national mean increase of 0.27% in mortality for a 10-

µg/m
3
 increase in PM10 on the previous day using GAMs, and a 0.22% increase based on 

generalized linear models (GLM). Our estimate of the mean with 50 df natural splines for time 

trends is 0.4% (95% CI = 0.30-0.53). This estimate is not directly comparable to the estimates 

from the hierarchical Bayes analyses because we are using somewhat different city-specific 

models and have many more cities with more years of data, although it is of interest to note that 

our estimate is virtually identical to the estimate reported for the Northeast (0.41; 95% posterior 

interval = 0.04 – 0.78) in the NMMAPS re-analyses (Dominici et al. 2003).  

 

In two-pollutant analyses of PM10 with CO, NO2, or SO2, PM10 coefficients are somewhat 

attenuated but continue to be significantly associated with mortality. The association with PM10 
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is attenuated most in joint pollutant analyses with NO2. With the exception of the two-pollutant 

model of PM10 and ozone, which produced a highly insignificant coefficient for ozone when a 

50df smoother was used, results were robust to the degree of smoothing of time trends (data not 

shown). Therefore, we report only 100 df time trend smoothers for joint pollutant analyses.  

 

Ozone There are several fairly recent meta-analyses (Bell et al. 2005; Ito et al. 2005; Levy et al. 

2005) and multi-city analyses (Bell et al. 2004; Katsouyanni et al. 2009; Smith et al., 2009) of 

the association between ozone and daily deaths. As Smith et al. point out there are two kinds of 

potential biases in meta-analyses: publication bias and model selection bias, in which the 

investigators test many models and report the results of only those models that show positive and 

significant associations. Therefore, multi-city analyses are preferable to meta-analyses. 

 

The first multi-city analyses were conducted by Dominici et al. (2003). These analyses were 

based on 8 years of data in 90 cities in the US. For a 10 ppb increase in daily ozone, the authors 

reported a national mean increase of approximately 0.25% in deaths on the following day, and 

this estimate was statistically significant. In an update of these analyses in 95 cities and with 14 

years of data, Bell et al. (2004) reported a statistically significant national mean of approximately 

0.2% (approximate 95% posterior interval = 0.1- 0.3%) for a lag-1 ozone effect on mortality. In a 

reanalysis of data from the NMMAPS (Katsouyanni et al. 2009), the ozone mortality estimates 

were highly sensitive to the degree and type of smoothing used for seasonality control, and 

inclusion of PM10 markedly reduced the ozone mortality estimates. Our estimated mean with 100 

df smoothers for time trends is 0.40% (95% CI = 0.27 – 0.56). With 50 df smoothers for time 

trends, the estimated mean for ozone is 0.08% (95% CI: -0.16, 0.38). Thus, the estimated ozone 
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effect is sensitive to the degree of smoothing of temporal trends, in agreement with the results 

reported by Katsouyanni et al. (2009). Because ozone is a highly seasonal pollutant, adequate 

control of seasonality is important, and using only 50 df for time trends may not be sufficient. To 

investigate this issue more thoroughly, further analyses of the data stratified by season should be 

undertaken. 

 

In joint pollutant analyses (100 df smoothers for time trends) with PM10, the ozone coefficient is 

substantially attenuated and becomes insignificant, as also reported by Smith et al. (2009) and 

Katsouyanni et al. (2009). One possible reason for the widening of confidence intervals for 

ozone effects is the greatly reduced dataset used in joint pollutant analyses. If this were the sole 

reason, however, one would expect to observe the same phenomenon for the PM10 effect, which 

was virtually unchanged and continues to remain highly significant.   

 

In an update to the Bell et al. (2004) paper, Bell et al. (2006) examined the ambient 

concentration-response curve for ozone and mortality, where their ozone metric was the average 

of the 24 hour mean concentrations on the current and previous days. Among various approaches 

evaluating ambient concentration-response relationships, Bell et al. used natural splines followed 

by a hierarchical Bayes procedure to obtain a national estimate. The results shown in Figure 3 of 

their paper suggest the possibility of a threshold at about 15 ppb. Smith et al. (2009) fit a piece-

wise linear ambient concentration-response relationship with breaks at 40 ppb and 60 ppb, and 

show that a hockey-stick shaped curve with a break at 40 ppb is consistent with the data. Our 

analysis shows evidence of a threshold at a little over 30 ppb (Figure 1B). However, the data are 

too sparse to draw any firm conclusions regarding the shape of the concentration-response curve 
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at low concentrations. We emphasize here that our analyses are based on 24-hour average 

concentrations of ozone, whereas regulation is based on the maximum 8-hour averages. Pollutant 

effect estimates cannot easily be converted from one averaging time to another. Smith et al. 

(2009) show that a simple scaling procedure is inadequate. It is, therefore, important to repeat 

these analyses with other measures of exposure. 

 

CO, NO2, SO2  The only previous multi-city analyses of these three pollutants were conducted 

during re-analyses of NMMAPS (Dominici et al. 2003). For increases of 1 ppm for CO and 10 

ppb for NO2 and SO2, respectively, the NMMAPS investigators reported statistically significant 

increases in all-cause mortality at a one-day lag of approximately 0.5%, 0.25%, and 0.6%. Our 

single pollutant estimates of the mean are higher for each of these pollutants (e.g., 1.3%, 1.0% 

and 1.5%, respectively, using 100df splines for time trends). In a multi-pollutant model including 

these three gases, CO was no longer significantly associated with mortality (mean 0.64%; 95% 

CI: -0.20, 1.09), but NO2 and SO2 remained so (mean 0.62; 95% CI 0.40, 0.98 and mean 0.82; 

95% CI: 0.48, 1.15, respectively). In interpreting this result it should be kept in mind that, 

because of missing data, multi-pollutant analyses are based on a smaller set of cities than single 

pollutant analyses. Concentration-response relationships for CO and SO2 are consistent with 

linearity. Although there is the suggestion of a threshold around 20 ppb for NO2, , as for PM, the 

confidence bounds are too wide to rule out linearity. 

 

Conclusions  

We have used the subsampling bootstrap procedure to derive maximum likelihood estimators of 

national effects of exposures to criteria pollutants on deaths the following day. The AIC for the 
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fitted models provides little evidence of a common effect estimate across the U.S., however (data 

not shown).  While the focus of much air pollution research for the past couple of decades has 

been on particulate matter and ozone, we find stronger associations between CO, NO2, and SO2 

and mortality. The ambient concentration-response relationship for ozone shows evidence of 

non-linearity. Regional and seasonal analyses using the methods described in this paper may 

offer further insight. Previous publications have reported that the results of time-series analyses 

of air pollution data in individual cities can be highly sensitive to choice of statistical model 

(e.g., Clyde et al. 2000; Koop and Tole 2004; Moolgavkar 2003). While our analyses are based 

on the most recent data available to us, which are not identical to the data used in previous 

analyses, our results suggest that different statistical approaches to multi-city analyses can yield 

disparate results.  

 

  

 

 

 

 

 

Page 21 of 33



 22

REFERENCES 

Bell ML, Dominici F, Samet JM. (2005) A meta-analysis of time-series of ozone and mortality 

with comparison to the National Morbidity, Mortality, and Air Pollution Study. Epidemiology. 

16:436 - 445. 

 

Bell, M. and Dominici, F. (2008) Effect modification by community characteristics on the short-

term effects of ozone exposure and mortality in 98 U.S. communities. American Journal of 

Epidemiology 167, 986-997. 

 

Bell ML, McDermott A, Zeger SL, Samet JM, Dominici F. (2004) Ozone and short-term 

mortality in 95 US urban communities, 1987-2000. JAMA 292:2372-2378. 

 

Bell ML, Peng R, Dominici F. (2006) The exposure-response curve for ozone and the risk of 

mortality and the adequacy of current ozone regulations. Environmental Health Perspectives 

114:532-536. 

 

Clyde M. (2000) Model uncertainty and health effect studies for particulate matter. 

Environmetrics, 11:745-763. 

 

Dominici F, McDermott A, Daniels M, Zeger SL, Samet JM. (2003) Mortality among residents 

of 90 cities. In Revised Analyses of the National Morbidity, Mortality, and Air Pollution Study, 

Part II. Health Effects Institute Special Report, Revised Analyses of Time-Series Studies of Air 

Pollution and Health. Health Effects Institute. 

 

Dominici F, Samet JM, Zeger SL. (2000) Combining evidence on air pollution and daily 

mortality from the 20 largest US cities: a hierarchical modeling strategy. J. R. Statist. Soc. A 

163:263-302. 

 

Efron B and Tibshirani RJ. An Introduction to the Bootstrap. (1993) Chapman and Hall, NY. 

 

Page 22 of 33



 23

Ito K, DeLeon SF, Lippmann M. Association between ozone and daily mortality, analysis and 

meta-analysis. Epidemiology 16:446-457, 2005. 

 

Katsouyanni K, Samet JM. Air Pollution and Health: A European and North American Approach 

(APHENA). Research Report 142, Health Effects Institute, Cambridge MA, 2009. 

 

Koop G., Tole L. Measuring the health effects of air pollution: to what extent can we really say 

that people are dying from bad air? J. Environ Econ and Management, 47:30-54, 2004. 

 

Levy JL, Chemerynski SM, Samet JM. Ozone exposure and mortality, an empiric Bayes 

metaregression analysis. Epidemiology, 16:458-488, 2005. 

 

Moolgavkar, S. H. Air pollution and daily deaths and hospital admissions in Los Angeles and 

Cook counties. In: Revised analyses of time-series studies of air pollution and health. Special 

report. Boston, MA: Health Effects Institute; pp. 183-198 2003. Available: 

http://www.healtheffects.org/news.htm [16 May, 2003]. 

 

Politis DN, Romano JP, Wolf M. Subsampling. Springer, NY 1999. 

 

Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL, Fine particulate air pollution and 

mortality in 20 US cities, 1987-1994. N Engl J Med 343:1742-1749, 2000a. 

 

Samet JM, Dominici F, Zeger SL, Schwartz J, Dockery DW,. The National Morbidity, Mortality, 

and Air Pollution Study, Part I: Methods and Methodologic Issues, Research Report 94, Health 

Effects Institute, Cambridge MA, 2000b. 

 

Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I, Dockery DW, Schwartz J, Zanobetti A. 

The National Morbidity, Mortality, and Air Pollution Study, Part II: Morbidity and Mortality 

from Air Pollution in the United States, Part II: Research Report 94. Health Effects Institute, 

Cambridge, MA, 2000c. 

 

Page 23 of 33



 24

Smith RL, Xu B, Switzer P. Reassessing the relationship between ozone and short-term mortality 

in U.S. urban communities. Inhalation Toxicology, 29(S2): 37-61, 2009. 

Page 24 of 33



 25

Table 1: Estimated mean percent change in daily mortality associated with a unit increase in 

pollutant concentration on the previous day, single pollutant model analyses
a
. 

POLLUTANT DF
b
 MEAN 90% CI 95% CI Cities 

PM10 

 

50 

100 

0.40 

0.39 

 0.33, 0.51 

 0.30, 0.48 

 0.30, 0.53 

 0.28, 0.49 

 

    102 

O3 

 

50 

100 

0.08 

0.40 

-0.11, 0.34 

 0.29, 0.53 

-0.16, 0.38 

 0.27, 0.56 

 

     98 

SO2 

 

50 

100 

1.60 

1.46 

 1.14, 1.91 

 1.17, 1.70 

 0.93, 1.94 

 1.07, 1.74 

 

     85 

NO2 

 

50 

100 

1.01 

1.03 

 0.91, 1.13 

 0.92, 1.14 

 0.89, 1.16 

 0.91, 1.18 

 

     72 

CO 

 

50 

100 

1.47 

1.30 

 1.18, 1.71 

 1.09, 1.53 

 1.15, 1.75 

 1.05, 1.58 

 

      95 

 

 
a
Units are 10µg/m

3 
for PM10, 10 parts per billion (ppb) for NO2, O3 and SO2 and one part per 

million (ppm) for CO. Temperature and relative humidity on the previous day are controlled 

using 6 df natural splines. Time trends are controlled using either 50 df or 100 df natural splines. 

Day of week is controlled as a categorical variable. The last column shows the number of cities 

available for analyses.  

b
Degrees of freedom for natural splines of time trends. 
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Table 2: Estimated mean percent change in daily mortality associated with a unit increase in 

pollutant concentration on the previous day, three pollutant model
a
. 

POLLUTANT MEAN 90% CI 95% CI 

SO2 0.82  0.57, 1.08  0.48, 1.15 

NO2 0.62  0.43, 0.92  0.40, 0.98 

CO 0.64 -0.10, 1.06 -0.20, 1.09 

 

a
Units are 10 parts per billion (ppb) for NO2 and SO2 and one part per million (ppm) for CO. 

Temperature and relative humidity on the previous day are controlled using 6 df natural splines. 

Time trends are controlled using 100 df natural splines. Day of week is controlled as a 

categorical variable. These joint-pollutant analyses are based on data from 58 cities. 
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Table 3: Estimated mean percent change in daily mortality associated with a unit increase in 

pollutant concentration on the previous day, two pollutant model
a
. 

 

POLLUTANT MEAN 90% CI 95% CI 

PM10 0.29 0.16, 0.42 0.13, 0.45 

CO 1.23 0.68, 1.64 0.55, 1.70 

PM10 0.20 0.07, 0.33 0.03, 0.36 

NO2 0.94 0.66, 1.20 0.60, 1.26 

PM10 0.33 0.23, 0.45 0.19, 0.46 

SO2 1.33 0.66, 1.85 0.38, 1.97 

PM10 0.39 0.29, 0.49 0.25, 0.51 

O3 0.22 -0.0008,  0.43 -0.05, 0.48 

 

a
 Units are 10µg/m

3 
for PM10, 10 parts per billion (ppb) for NO2, O3 and SO2 and one part per 

million (ppm) for CO. Temperature and relative humidity on the previous day are controlled 

using 6 df natural splines. Time trends are controlled using 100 df natural splines. Day of week is 

controlled as a categorical variable. The numbers of cities on which these two-pollutant analyses 

are based are as follows, PM10 and CO: 92; PM10 and NO2: 72; PM10 and SO2: 83; PM10 and O3: 

95. 
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FIGURE LEGENDS 

 

Figure 1. Flexible ambient concentration-response relationship between pollutants and deaths on 

the following day. Pointwise means and 95% confidence intervals adjusted for size of the 

bootstrap sample (d=4) as described in the text. (A) PM10, (B) O3, (C) CO, (D) NO2, (E) SO2. 
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